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Abstract—We present a preliminary study of list-mode likeli-
hood reconstruction of images for a rectangular positron emission
tomograph (PET) specifically designed to image the human breast.
The prospective device consists of small arrays of scintillation crys-
tals for which depth of interaction is estimated. Except in very rare
instances, the number of annihilation events detected is expected to
be far less than the number of distinguishable events. If one were
to histogram the acquired data, most histogram bins would remain
vacant. Therefore, it seems natural to investigate the efficacy of
processing events one at a time rather than processing the data
in histogram format. From a reconstruction perspective, the new
tomograph presents a challenge in that the rectangular geometry
leads to irregular radial and angular sampling, and the field of view
extends completely to the detector faces. Simulations are presented
that indicate that the proposed tomograph can detect 8-mm-diam-
eter spherical tumors with a tumor-to-background tracer density
ratio of 3 : 1 using realistic image acquisition parameters. Spherical
tumors of 4-mm diameter are near the limit of detectability with
the image acquisition parameters used. Expressions are presented
to estimate the loss of image contrast due to Compton scattering.

Index Terms—Image reconstruction, list-mode likelihood, mam-
mography, positron emission tomography.

I. INTRODUCTION

WE present a preliminary study of list-mode likelihood
reconstruction of images for a positron emission tomo-

graph (PET) specifically designed to image the human breast.
The prospective device consists of small arrays of scintillation
crystals for which depth of interaction is estimated. Except in
very rare instances, the number of annihilation events detected is
expected to be far less than the number of distinguishable events.
If one were to histogram the acquired data, most histogram bins
would remain vacant. Therefore, it seems natural to investigate
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Fig. 1. Device Geometry. Four banks of detectors, each composed of8 � 8

arrays of crystals, define the geometry of the PEM camera. Each crystal is
expected to distinguish depth of interaction to eight different levels. The
tomograph has 172 million possible lines of response (LOR).

the efficacy of processing events one at a time, rather than pro-
cessing the data in histogram format.

The methods we refer to as list-mode likelihood have been
used for many years to analyze experiments in the field of high
energy physics [1] and were suggested for PET image recon-
struction in 1983 [2]. Renewed interest in list-mode likelihood
PET image reconstruction is reflected by several recent publi-
cations [3]–[7].

A paradigm is presented that accurately accounts for detec-
tion probabilities in the absence of Compton scatter, either in
the field of view or the detectors. It is able to compute the high
resolution (unscattered) portion of the system matrix for a par-
ticularly irregular sampling geometry that includes depth of in-
teraction information.

II. GEOMETRY OF THEDEVICE

We give here an idealized model of the PET camera for which
list-mode likelihood reconstruction is anticipated to be advan-
tageous [8]. Individual crystals of scintillator (see Fig. 1) are
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mm and modules consist of arrays of crystals.
The tomograph consists of four banks of modules, two banks of

modules left and right, and two banks of modules
top and bottom. The imaging region is therefore
mm . Each bank is placed in coincidence with the other three,
giving rise to 657 combinations of two modules placed in coin-
cidence with one another. In addition to the 64 crystals in each
module, the system will be able to distinguish the depth of in-
teraction of the annihilation photon within a crystal to about one
part in eight, so that 512 different signatures for a detection in a
module are possible. Histogramming these data without loss of
information will require million bins. Cubic
voxel sizes of 3 mm or 2 mm will result in 18 432 or 62 208
voxels, respectively.

III. L IKELIHOOD RECONSTRUCTION FORLIST-MODE DATA

Although the likelihood function for list-mode data can easily
be formulated from first principles [3], we give here a deriva-
tion that follows naturally from an expression for the likelihood
function for statistically independent, Poisson-distributed his-
togram data. This is a natural progression in medical imaging in
which data are ordinarily acquired in histogram format and sta-
tistical reconstruction techniques have been used to reconstruct
statistically efficient medical images.

If the expected value for theth bin is denoted by , then
the probability of observing events in the th histogram bin is
given by the Poisson distribution , and the probability of
observing the entire histogrammed dataset (ofbins) is given
by the product

The reconstruction problem is often posed as that of finding the
distribution of radioisotope that would come “closest” to pro-
jecting the observed data. In maximum-likelihood reconstruc-
tion, “close” means likely or having high probability. The ex-
pected data can be written as

where is the amplitude of theth basis function used to model
the radioisotope density, and is the number of basis functions.

links a representation of the distribution of radioisotope with
the expected number of histogrammed events in each bin. It is
called the “system matrix” or the projection matrix and contains
all of the physics of the data acquisition process. If the basis
functions are normalized such that is equal to the expected
number of radioactive disintegrations from theth basis func-
tion, then is the probability that a random event from the
th basis function is detected in theth bin. We use cubic voxel

basis functions to model the radioisotope distribution.
We can now express the probability of the observed his-

togrammed data as a function of the distribution of radioisotope

This expression is also called the likelihood function with re-
spect to our parameterization of the distribution of radioisotope.
The natural logarithm is usually easier to work with, and there-
fore we write

where the dependence on the parameters is explicit, and the con-
stant term, , has been dropped since it will not enter into
the maximization of with respect to .

For list-mode maximum-likelihood, we convert the first term
to a sum over events instead of histogram bins. We also reverse
the order of summation in the second term. If the bin number
for the th event is denoted by , we have

where is the total number of detected events, andis the
efficiency of detecting events from theth voxel.

A well-known, but slowly converging, method to maximize
is the expectation maximization (EM) algorithm [9]. For

list-mode data the EM algorithm uses the following iterative
stepping to obtain a solution:

IV. REGULARIZATION

In order to regularize the EM reconstruction we have used a
technique described by Levitan and Herman [10]. The idea is to
penalize the likelihood function with our prior knowledge of the
nature of the image by using a Gaussian prior whose logarithm
is of the form

so that can be coaxed to be close to with some weighting
given by . The scalar is an overall strength parameter for
the regularization. This is the appropriate penalty function for a
Gaussian prior with equal to the inverse of the covariance
matrix of , and .

If the matrix is diagonal, the EM iterative process can
easily be carried out since the set of equations to be solved in
the -step is not coupled. After substituting the identity matrix
for , the new stepping procedure is given by

This procedure may be appropriate for imaging distributions
that are expected to be uniform or when a prior estimate of the
distribution is obtained by a simpler approach such as filtered
backprojection.



534 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 5, MAY 2000

V. THE SYSTEM MATRIX

To model the physics of the data acquisition process, we start
with a simple model of two small, infinitely dense “black” de-
tectors placed in coincidence and separated by a distance. If
the distance between the detectors is large compared to their
size, then the solid angle of the second detector seen from the
first is given by

where is the area of the second detector projected on a
plane perpendicular to the line between them. Therefore, the
probability of detecting events from a point source placed be-
tween the detectors and very close to the first one is given by

divided by , the solid angle of the half sphere. To get the
expected number of coincident events observed from a unit in-
tensity uniform planar source we multiply by , the projected
area of the first detector

To a very good approximation, the coincident event rate from a
uniform planar source placed between the detectors perpendic-
ular to the line joining them is independent of the location of the
source along this line. Therefore, the expected number of events
observed by the two detectors is given by

# events (black)

where the expression denotes the line integral of the
source density between the two detectors, denotes
the line integral of the linear attenuation coefficient between
the two detectors to account for self-attenuation, and we have
assumed that the source densityand the attenuation coefficient

vary slowly transverse to the line between the detectors.
Now taking account of the fact that the detectors are not in fact

“black,” but have linear attenuation coefficientand, therefore,
a probability of penetrating to the depth before inter-
acting, the probability of an annihilation photon being detected
in the thickness at the depth is given by

where the approximation is valid for small values of , i.e.,
thin detectors. Now the expected number of events observed by
two small detector volumes placed in coincidence and each em-
bedded at some depth within a larger amount of detector mate-
rial can be calculated using the formula

# events

where and are the interaction depths in the two detector
volumes and , respectively (with ).
Neglecting many confounding physical effects of positron to-
mography (scatter, photon acollinearity, positron range, etc.),
this equation is exact for infinitesimal volumes and .

We now put this into the context of the model of radioisotope
distribution using normalized cubic voxels of volume. The
density integral is then given by

where is the length, within the th voxel, of the line of re-
sponse corresponding to theth bin. Then we have

and

Implementation of this form of the density integral gives an ap-
proximation of the probability which is only true for two infin-
itesimal detector volumes each of volume. The correct imple-
mentation of this approach takes the average value of the term in
the large brackets for all combinations of infinitesimal volumes
of each of the two finite detectors taking part in the coincident
detection. In addition, we now model self-attenuation within the
imaging volume as a continuous uniform medium of attenuation
coefficient , so that

where denotes the average value alluded to above. This
model for self-attenuation assumes that the attenuating medium
completely fills the field of view. This is the worst-case sce-
nario, which can easily be relaxed, and a convex boundary for
the attenuating medium can be determined from the emission
data when the assumption is not satisfied.

Our implementation uses an approach that equally subdivides
each relatively large detector into a set of smaller volumes,
thus better approximating the infinitesimal detector volumes
assumed in the discrete approximation. A detector is divided
equally along each dimension so that a division level of
results in a set of equal subvolumes. Connecting each
subvolume between two detectors therefore results inline
integrals for each detector pair. This approach is intended to
model the response function of the physical system of detectors
described in Section II under the simplifying assumptions of
a uniform attenuator in the field of view and the absence of
confounding physical effects, especially Compton scatter.

VI. EXPECTEDCOUNT RATES AND DATA SET SIZES

In order to estimate background rates for this analysis, we
assume a subject weighing 70 kg and an injection of 1 mCi
(37 MBq) of [F-18]-labeled deoxyglucose (FDG), which is uni-
formly distributed within the body. This activity density within
our -mm field of view and an imaging time of
60 s gives about 16 million disintegrations within the imaging
volume. The combined geometric and physical detection effi-
ciency of the model outlined above is 14.5%, including self-at-
tenuation, and results in about 2.3 million detected coincident
events. (Histogrammed data would require 172 million bins.)
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We have investigated density integral models with a single
line integral between the depth decoded portions of the scintil-
lator crystals and models that average many line integrals taken
between more finely divided subvolumes of the depth decoded
portions of the scintillator crystals. On-the-fly calculation of
results in 10 s per event per iteration of the EM algorithm for
each line integral in the model (23 s per iteration for 2.3 million
events). If the nonzero factors are stored on disk, an average
of 350 bytes are required for each event, and iteration speed is 20

s per event for single line integrals. These numbers are dom-
inated by disk speed and increase to 1000 bytes per event and
40 s per event, respectively, for integral models which average
many lines. Results are averages of 2-mm and 3-mm voxel tests,
and timing was done on an SGI Octane 225 MHz MIPS R10000.
For 2-mm voxels, the 64 line integral model appears necessary
to avoid artifacts in the calculated efficiency map.

VII. SIMULATIONS

Simulation results focus on the tomograph’s ability to detect
small tumors in data obtained from a typical breast examination.
For simulations of acquired data, a linear attenuation coefficient
of 0.01 mm was used for self-attenuation, and a linear attenu-
ation coefficient of 0.1 mm was used for crystal penetration.
The effects of photon Compton scatter were not modeled, nei-
ther for scatter in the field of view nor in the detectors. Photons
that interact in any way in the field of view are assumed unde-
tected, and photons that interact in the detectors are assumed to
do so once in a single well-defined depth decoded portion of a
scintillator crystal. (We discuss the effects of Compton scatter
in the next section.) Results show that despite the irregular sam-
pling for this tomograph and a field of view that extends to the
detector faces, high resolution, isotropic reconstructions may be
obtained throughout the entire imaging volume.

Fig. 2 shows the expected efficiency of the device using
3-mm voxels. As shown in Fig. 2(a), the expected efficiency
ranges from about 0.15 to 0.40 in the central plane and de-
creases to about 0.01 in the outer planes. Calculations of the
efficiency using the analytically defined system matrix and 1,
64, and 729 line integrals per detector line of response (LOR)
are seen in Fig. 2(b)–(d), respectively. In these images, the
results are shown as the difference image between the Monte
Carlo estimation and the analytically calculated results. Com-
parison of these results show that for the 3-mm voxel case, the
center voxel efficiencies are accurate using any of the models,
but accurate estimation of corner voxel efficiencies requires
a model using more line integrals. This effect is seen more
dramatically for the case of 2-mm voxels. As seen in Fig. 3,
comparison of the Monte Carlo images with the difference im-
ages of Fig. 3(b)–(d) show that artifacts are present throughout
the volume if a multiple line integral model is not used.

Reconstructions of a flood phantom with 16 million total
disintegrations within the imaging field of view are presented
in Fig. 4. The images represent the reconstruction of approxi-
mately 2.3 million detected events. For all reconstructions, the
penalty function of the Gaussian prior was set such that

, and the EM algorithm was run until the penalized likelihood
function reached a maximum. The coefficient of the uniform

Fig. 2. PEM Efficiency (3-mm voxels). Detection efficiency obtained via
Monte Carlo is presented in (a). Absolute difference images between the Monte
Carlo result and analytically calculated efficiency using 1, 64, and 729 line
integrals for each LOR are shown in (b), (c), and (d), respectively. Comparison
of these images and the relative scale of the errors reveals that the simpler
models produce errors principally at the corners.

Fig. 3. PEM Efficiency (2-mm voxels). Detection efficiency obtained via
Monte Carlo is presented in (a). Absolute difference images between the
Monte Carlo result and the analytically calculated efficiency using 1, 64, and
729 line integrals for each LOR are shown in (b), (c), and (d), respectively.
For the 2-mm voxel case, rather severe artifacts are present using the single
line integral method (b). It appears that at least a 64 line integral technique is
required to prevent large errors.

prior was set to the total number of detected events divided
by the number of voxels and corrected upward to reflect the av-
erage efficiency of 14.5% within the field of view. Results using
the 729 line integral model are seen in Fig. 4(a), and for compar-
ison, the reconstructions, using the 64 and 1 line integral models,
are shown in Fig. 4(b) and (c). As was seen in the calculated effi-
ciency volumes of Figs. 2 and 3, the model using more line inte-
grals per LOR produces images with fewer artifacts, especially
at the corners of the imaging volume. The reconstructions are
reasonably uniform and have similar qualitative noise character-
istics. Particularly encouraging is the fact that for 2-mm voxels,
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Fig. 4. Flood Phantom Reconstruction. Flood phantom reconstruction using
2-mm voxels and 729, 64, and 1 line integrals for each LOR are shown in (a), (b),
and (c), respectively. Reasonably flat reconstructions are obtained in all cases,
though considerably more noise and errors in the corner voxels are present in
case (c).

Fig. 5. Nodule Simulation (8-mm spheres). Seven 8-mm spherical nodules
simulating breast tumors are seen against a noiseless background in a 2-mm
voxel volume in (a). Voxel intensities are proportional to the number of events
generated and detected from the spheres. Reconstructions using a simulated
tumor-to-background tracer density ratio of 3 : 1 reveal that the nodules are
easily detectable using either the 729, 64, or 1 line integral/LOR models, seen
in (b), (c), or (d), respectively.

reconstruction artifacts do not appear when using a voxel size
less than the size of the detectors.

To test the ability of the tomograph and reconstruction algo-
rithm to detect well-defined tumors in a typical breast examina-
tion, a mathematical phantom of seven 8-mm diameter spheres
was created. The phantom on a noiseless background is seen in
Fig. 5(a). List-mode events from the spherical phantom were
added to the flood phantom background such that the radio-
tracer density ratio between the nodules and the background
was 3 : 1. This dataset was then reconstructed using the same
EM algorithm as described previously. Comparison of the im-
ages produced using 729, 64, and 1 line integral model, shown in
Fig. 5(b)–(d), respectively, reveal that simulated tumors of this
size and contrast are easily detected using any of the models.

Fig. 6. Nodule Simulation (4-mm spheres). Seven 4-mm spherical nodules
against a noiseless background are seen in (a). Voxel intensities are
proportional to the number of events generated and detected from the spheres.
Reconstruction (2-mm voxels and 729 line integrals) of the phantom with a
target-to-background tracer density ratio of 3 : 1 shows that even the 4-mm
spheres are detectable when scatter is not included in the simulation (b).

Here, the 729 and 64 line integral models appear to perform
equally.

Results of a more challenging simulation are presented
in Fig. 6. Here, the diameter of the spherical nodules was
decreased from 8 mm to 4 mm. Reconstructed results show
that even in this case, for which the number of events arising
from the spheres is reduced by a factor of eight, the nodules
are usually detectable under the idealized assumptions we have
made concerning scatter backgrounds. Note that even though
the two spheres in the outer planes may be difficult to see
in this case, the simulated imaging parameters here are quite
conservative, and either an increase in patient dose or imaging
time will improve contrast-to-noise ratios.

VIII. C OMPTON SCATTER

An important physical effect that we have neglected in this in-
vestigation is the detection of photons that have Compton scat-
tered. In our model of self-attenuation, we have assumed that
photons that interact in any way in the field of view remain un-
detected. Actually, many of these scattered photons escape the
imaging volume and are well above the energy threshold of the
detectors. Similarly, we have assumed that any photon that in-
teracts in the detectors does so in a single well-defined depth de-
coded portion of a scintillator crystal, which we can unambigu-
ously determine. Some of these photons also Compton scatter,
giving rise to ambiguities which preclude determination of the
first interaction point, or they can deposit energy below the de-
tector threshold and are undetected. These effects weaken our
analysis, but there are some general statements that can be made
about the consequences of scatter in this application.

We consider three types of Compton scattering that affect the
conclusions of this paper: photons scatter in the field of view
and are detected, photons scatter in the detectors and preclude
precise determination of a single interaction point, and photons
scatter in the detectors but are undetected. For the physiolog-
ical conditions assumed in this investigation (isolated lesions in
a uniform background of activity), we have performed a Monte
Carlo calculation of the average background due to these types
of scatter. This calculation uses the appropriate energy-depen-
dent cross sections for the interaction of photons in water (in
the field of view) and in lutetium oxyorthosilicate (commonly
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referred to as LSO, the scintillator used in our device). (Using
these linear attenuation coefficients, the average efficiency for
the simplified detection model is reduced to 13.8% instead of
14.5% as quoted above.) For an energy threshold of 270 keV, we
have found that: the fraction of annihilations that have a photon
scatter in the field of view and are detected (case 1) is 0.040, the
fraction of annihilations for which photons have not scattered in
the field of view but have a photon scatter in the detector and are
detected in the wrong location (case 2) is 0.040, and the fraction
of annihilations for which photons have not scattered in the field
of view, have both photons interact in the detectors, but have a
photon remain undetected (case 3) is 0.052.

Scatter within the field of view appears to arise from a broad
spatial distribution, and for purposes of approximating back-
grounds we assume that annihilations from isolated sources that
belong to case 1 will simply be indistinguishable from the uni-
form background of our physiological model. Detected events
that scatter within the detectors have a much more limited spatial
distribution [11], but for the purposes of this exercise we assume
the worst-case scenario: annihilations from isolated sources that
belong to case 2 will also be indistinguishable from the uniform
background of our physiological model. Therefore, the average
detection fraction of 0.138 for isolated sources (simplified de-
tection model) is reduced by 0.040 (case 2) and 0.052 (case 3)
to give 0.046. For annihilations originating in the background,
0.138 is increased by 0.040 (case 1) and reduced by 0.052 (case
3) to give 0.126. (The loss of events from isolated sources that
contribute to the background is small and has been neglected in
the estimation of background events.)

From these considerations we see that the effective rela-
tive efficiency of background events to target events is about

, so that a target-to-background activity ratio
of 3 : 1 is effectively reduced to .
The total number of events acquired will be reduced by 9%

. Therefore, the most significant effect
of scatter for this application is an effective loss of contrast. It
is expected that scatter in the field of view can be appropriately
modeled in the system matrix. Accounting for inter-detector
scatter in the system matrix will result in better contrast than
we have pessimistically assumed here.

IX. SUMMARY

We have outlined a problem in nuclear medicine that may be
amenable to analysis using the method of list-mode maximum-
likelihood reconstruction. A methodology has been discussed,
that is expected to yield desirable imaging properties and well-
understood quantitative measures.

A paradigm has been presented that accurately accounts for
detection probabilities in the absence of Compton scatter either
in the field of view or the detectors. It is able to compute the
high resolution (unscattered) portion of the system matrix for a
particularly irregular sampling geometry that includes depth of
interaction information.

Simulations show that 8-mm diameter spherical nodules are
easily detected for an extremely conservative scanning para-
digm: very low patient dose (1 mCi injection of FDG), short
imaging time (1 min), and realistic target-to-background radio-
tracer density ratio (3 : 1). Spherical nodules 4 mm in diam-
eter are visible but more difficult to detect in this imaging en-
vironment, but a factor of 20 increase in detected events can
easily be achieved by doubling the very low patient dose and
increasing the imaging time to 10 min. Reconstruction time for
this case would grow approximately linearly with the size of the
list-mode data file.

Approximations have been presented that describe an effec-
tive reduction in the target-to-background activity ratio due to
the effects of Compton scatter.
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